Modelling seasonal influenza: the role of weather and punctuated antigenic drift.

نویسندگان

  • R Yaari
  • G Katriel
  • A Huppert
  • J B Axelsen
  • L Stone
چکیده

Seasonal influenza appears as annual oscillations in temperate regions of the world, yet little is known as to what drives these annual outbreaks and what factors are responsible for their inter-annual variability. Recent studies suggest that weather variables, such as absolute humidity, are the key drivers of annual influenza outbreaks. The rapid, punctuated, antigenic evolution of the influenza virus is another major factor. We present a new framework for modelling seasonal influenza based on a discrete-time, age-of-infection, epidemic model, which allows the calculation of the model's likelihood function in closed form. This framework may be used to perform model inference and parameter estimation rigorously. The modelling approach allows us to fit 11 years of Israeli influenza data, with the best models fitting the data with unusually high correlations in which r > 0.9. We show that using actual weather to modulate influenza transmission rate gives better results than using the inter-annual means of the weather variables, providing strong support for the role of weather in shaping the dynamics of influenza. This conclusion remains valid even when incorporating a more realistic depiction of the decay of immunity at the population level, which allows for discrete changes in immunity from year to year.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Identification of Antigenicity-Associated Sites in the Hemagglutinin Protein of A/H1N1 Seasonal Influenza Virus

The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein ...

متن کامل

Projection of seasonal influenza severity from sequence and serological data Œ PLOS Currents Influenza

Severity of seasonal influenza A epidemics is related to the antigenic novelty of the predominant viral strains circulating each year. Support for a strong correlation between epidemic severity and antigenic drift comes from infectious challenge experiments on vaccinated animals and human volunteers, field studies of vaccine efficacy, prospective studies of subjects with laboratory-confirmed pr...

متن کامل

Projection of seasonal influenza severity from sequence and serological data

Severity of seasonal influenza A epidemics is related to the antigenic novelty of the predominant viral strains circulating each year. Support for a strong correlation between epidemic severity and antigenic drift comes from infectious challenge experiments on vaccinated animals and human volunteers, field studies of vaccine efficacy, prospective studies of subjects with laboratory-confirmed pr...

متن کامل

A deterministic model for influenza infection with multiple strains and antigenic drift

We describe a multiple strain Susceptible Infected Recovered deterministic model for the spread of an influenza subtype within a population. The model incorporates appearance of new strains due to antigenic drift, and partial immunity to reinfection with related circulating strains. It also includes optional seasonal forcing of the transmission rate of the virus, which allows for comparison bet...

متن کامل

Influenza A Gradual and Epochal Evolution: Insights from Simple Models

The recurrence of influenza A epidemics has originally been explained by a "continuous antigenic drift" scenario. Recently, it has been shown that if genetic drift is gradual, the evolution of influenza A main antigen, the haemagglutinin, is punctuated. As a consequence, it has been suggested that influenza A dynamics at the population level should be approximated by a serial model. Here, simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 84  شماره 

صفحات  -

تاریخ انتشار 2013